

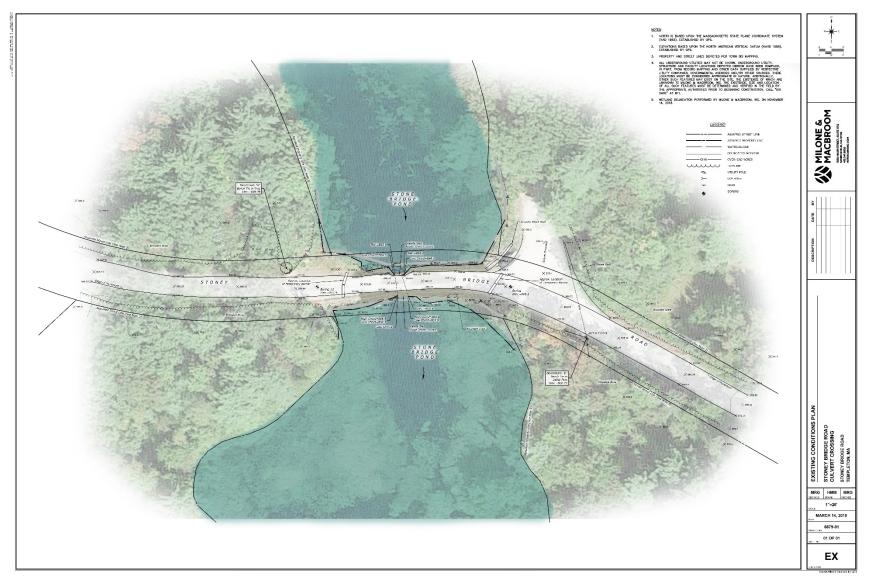
PRESENTATION FOR Town of Templeton 160 Patriots Road East Templeton, MA

JUNE 5, 2019

MILONE & MACBROOM

AGENDA

- Project Background
- Work Completed to Date
- Concept Overview
- Next Steps


PROJECT BACKGROUND

- Former Industrial Mill Complex in 1800's
- Partial Collapse Closed to Thru Traffic August 2018
- Significant Environmental and Recreational Resources
 - Ware River Rail Trail
 - Adjacent Department of Fish & Game Property
 - Stone Bridge Pond

Figure 2: Historic Stone Bridge Monument

EXISTING CONDITIONS

ENVIRONMENTAL RESOURCE AREAS

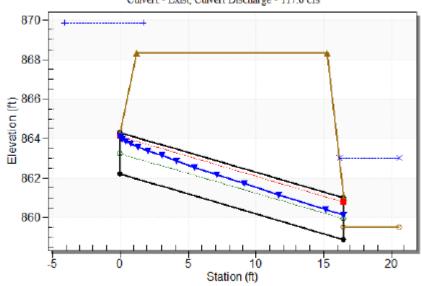
- Protected and Recreational Open Space
- Federal Emergency Management Agency (FEMA) Flood Zone
- DCR Water Supply Protection Area
- Wetland Resource Areas
 - Stone Bridge Pond Land Under Water/Inland Bank
 - Burnshirt River 200' Riverfront Area



WORK COMPLETED TO DATE

- Field Survey and Base Plan
- Wetland Delineation
- Geotechnical Investigation
- Coordination with Other Agencies
 - Town of Phillipston Police, Fire, and Highway Dept.
 - Town of Templeton Police, Fire, and Highway Dept.
 - Narragansett Regional School
 - Templeton Community Preservation Committee
 - Massachusetts Historical Commission (MHC)

WATERSHED DESCRIPTION



HYDRAULIC MODELING

- HY-8 Hydraulic Analysis Objectives
 - Meet MA Stream Crossing Standards
 - 10-Year Design Storm
 - Improve Flood
 - Enhance Aquatic Passage

Water Surface Profile Plot for Culvert: Exist

Crossing - Stoney Bridge Rd-Existing, Design Discharge - 766.0 cfs Culvert - Exist, Culvert Discharge - 117.6 cfs

Crossing Discharge Data

Discharge Selection Method: Recurrence

AQUATIC ORGANISM PASSAGE (AOP) ANALYSIS

TABLE 2 Fish Passage Hydraulic Criteria (Bates and Kirn, 2009)

FISH PASSA	IGE HYDRAULIC CRIT	ERIA (BATES AND KIR	N, 2009)		
Brook Trout					
Lifestage	Adult	Juvenile	Notes		
Maximum velocity (fps)	2.40	0.80	Length 40 to 100 feet		
Maximum outlet drop (ft)	0.67	0.33			
Target low-flow depth (ft)	0.35	0.18			
Brown Trout					
Lifestage	Adult	Juvenile	Notes		
Maximum velocity (fps)	4.30	1.70	Length 40 to 100 feet		
Maximum outlet drop (ft)	0.67	0.33			
Target low-flow depth (ft)	0.63	0.15			

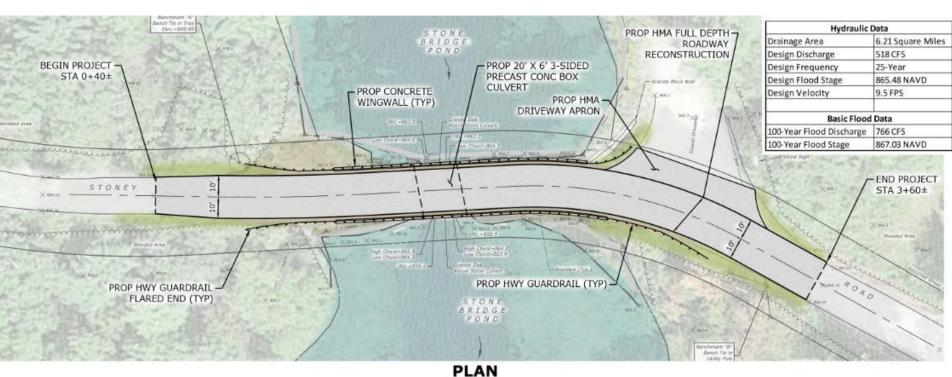
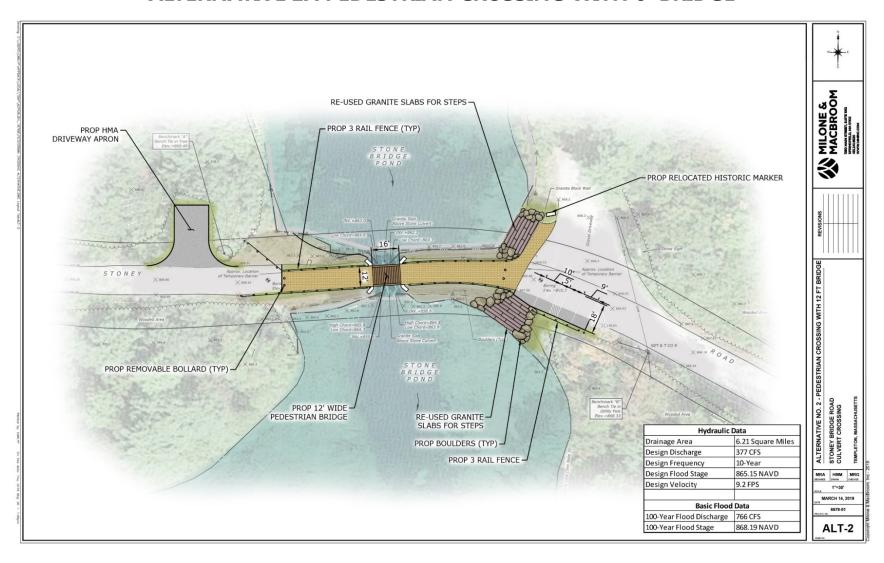

The AOP hydraulic analysis was conducted using the FishXing modeling software (Furniss et al., 2009). Results indicate that velocity is a barrier for fish passage through the existing structure and that fish are unlikely to pass the structure over the range of low and high estimated fish passage flows.

TABLE 3 AOP Summary (Existing Culvert)

		Low	Passage Flow	High	Passage Flow	
Species	Age	Q (cfs)	Barrier Type	Q (cfs)	Barrier Type	Passability (%)
Brook Trout	Adult	0.9	None	107	Velocity	23.9%
Brook Trout	Juvenile	0.9	None	107	Velocity	7.4%
Brown Trout	Adult	0.9	None	107	Velocity	43.9%
Brown Trout	Juvenile	0.9	None	107	Velocity	16.7%

ALTERNATIVE 1

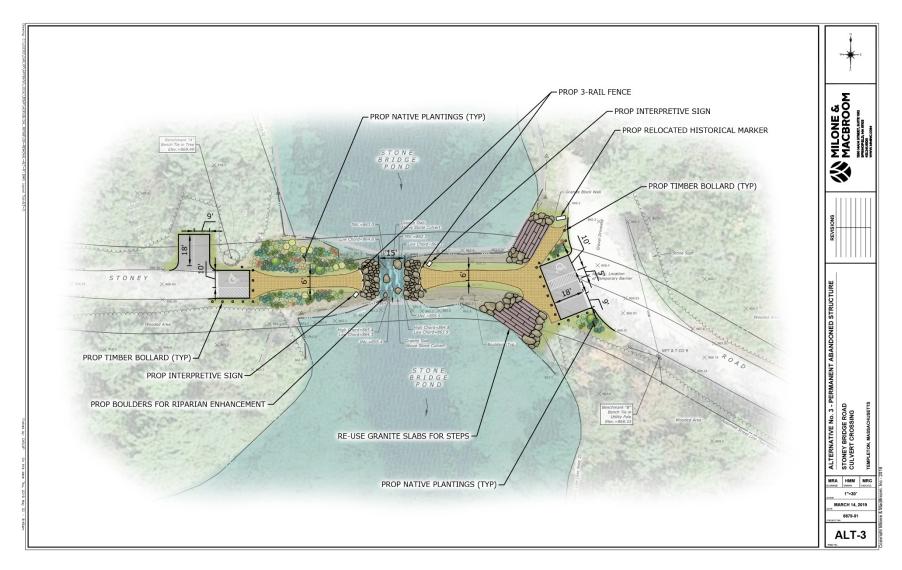
COMPLETE CULVERT REPLACEMENT AND RESTORE TWO-WAY VEHICLE TRAFFIC



PLAN SCALE: 1"=30"


ALTERNATIVE 2

PEDESTRIAN CROSSINGS WITH 12' BRIDGE AND ALTERNATIVE 2A PEDESTRIAN CROSSING WITH 6' BRIDGE



ALTERNATIVE 2A

ALTERNATIVE 3

ABANDON STRUCTURE

ALTERNATIVES ANALYSIS MATRIX

TABLE 4 Alternatives Matrix

						& Sediment				Brook Trout		Brown Trout			
Alternative	Description	Reduce Outlet Drop	Lower Velocity in Culvert	Increase Low Flow Depth	Retain Sediment in Structure	Improve Conveyance of Water	Improve Flood Resiliency	Sustainability	Comparative Installation Cost	Fish Passage Barrier(s)	% Fish Passability (AB, JB)	Fish Passage Barrier(s)	% Fish Passability (AB, JB)	Permits ¹	Remarks
Existing Structure	5.5' ± wide, 2.1' high, 18' long, open bottom structure, stone masonry abutments, granite slab top	70	-	s ⊞ s	Ŧ	27	-	0	Low	Velocity	23.9, 7.4	Velocity	43.9, 16.7	N/A	Sediment deposition at inlet, scour hole at outlet, roadway overtopping for 2-yr storm
Alt-1 Full Vehicle Crossing	20' span concrete arch x 6' high, wingwalls, 26' wide	+	+	+	+	+	+	0	High	Velocity	80.5, 26.1	Velocity	100, 56.6	NOI, ENF, WQC, PCN	Structure supports full two- way vehicle roadway traffic
Alt-2 Pedestrian Crossing	16' span concrete arch x 6' high, headwalls, 12' wide	#::	+	+	+	+	+	+	Moderate	Velocity	64.4, 20.8	Velocity	100, 45.3	NOI, WQC, SV	Pedestrian crossing with capability for emergency vehicle crossing only
Alt-2A Pedestrian Crossing	16' span concrete arch x 6' high, headwalls, 6' wide	+	+	+	+	+	+	+	Moderate	Velocity	64.8, 21.0	Velocity	100, 45.6	NOI, WQC, SV	Pedestrian crossing only
Alt-3 Permanently Abandon Structure	Increase channel width to 15', remove stone abutments, grade 2:1 with riprap revetment	+	+	+	+	+	+	+	Low	N/A	N/A	N/A	N/A	NOI, SV	Alternative abandons existing crossing, with open channel, flood benches and boulder riparian enhancement

Key: + = good; o = none; - = poor

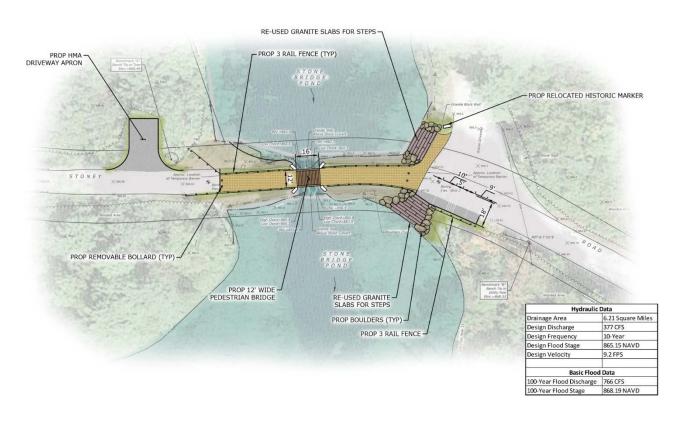
Note 1: Permit Abbreviations

NOI = Massachusetts Wetland Protection Act Notice of Intent

ENF = Massachusetts Environmental Policy Act Environmental Notification Form

WQC = MassDEP 401 Water Quality Certification

SV = United States Army Corps of Engineers Self-Verification Eligible


PCN = United States Army Corps of Engineers Pre-Construction Notification Required

PREFERRED ALTERNATIVE

ALTERNATIVE 2:

- Adequate Conveyance for 10-Year Design Storm
- Significant Aquatic and Wildlife Passage Improvements
- Recreation Enhancements with Emergency Vehicle Access

NEXT STEPS

- Seek Grant Funding Opportunities
 - Division of Ecological Restoration (DER) Culvert Replacement
 Municipal Assistance Grant Program (Application Pending)
 - Community Preservation Act (CPA)
 - Mass Municipal Vulnerability Preparedness (MVP) Program
 - FEMA Hazard Mitigation Grant Program (HMGP)
 - FEMA Culvert Grants and Environmental and Historic Preservation (EHP)
 - Surface Transportation Program (STP)
- Final Design-Permitting-Bid-Construction

